Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Methyl 1-deoxy-1-(N^{1}-thyminyl)- β-dpsicofuranoside

Jarkko Roivainen, ${ }^{\text {a }}$ Hans Reuter, ${ }^{\mathbf{b} *}$ Igor A. Mikhailopulo ${ }^{\mathbf{c}} \boldsymbol{\ddagger}$ and Henning Eickmeier ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Pharmaceutical Chemistry, University of Kuopio, PO Box 1627, FIN70211 Kuopio, Finland, ${ }^{\text {b }}$ Anorganische Chemie II, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany, and ${ }^{\text {c }}$ Organische Chemie I, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, D-49069
Osnabrück, Germany
Correspondence e-mail: hreuter@uos.de
Received 27 September 2007; accepted 4 October 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.044 ; w R$ factor $=0.132 ;$ data-to-parameter ratio $=12.2$.

In the structure of the title compound, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}$, the furanosyl ring adopts the S-type sugar pucker with the following pseudorotational parameters: $P_{S}=159.6^{\circ}\left(\mathrm{C}^{\prime}-\right.$ endo according to the designation of the ribofuranose ring of natural nucleosides; C 3 '-endo according to the numbering of the title compound) and $\nu_{\max }=35.9^{\circ}$. The conformation around the $\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$ bond is ap (gauche-trans; gt; $-g$), with a torsion angle γ of $-170.3(2)^{\circ}$. The structure of the thymine base is very similar to that of thymidine. There are intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For related literature, see: Chekhlov (1995); Kulak et al. (2005); Miles et al. (1967, 1970); Pradeepkumar et al. (2004); Roivainen et al. (2002, 2006); Seela et al. (1999); Young et al. (1969).

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}$
$M_{r}=302.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.7476$ (7) \AA
$b=15.6207$ (12) A
$c=15.6735$ (12) \AA
$V=1407.2(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.35 \times 0.16 \times 0.16 \mathrm{~mm}$

[^0]
Data collection

Siemens P4 diffractometer
Absorption correction: none
3072 measured reflections
2335 independent reflections
2102 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.021
$$

3 standard reflections every 97 reflections intensity decay: 0.4%

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044 \quad 192$ parameters
$w R\left(F^{2}\right)=0.132 \quad$ H-atom parameters constrained
$S=1.05$
$\Delta \rho_{\max }=0.25 \mathrm{e}_{\AA^{-3}}$
2335 reflections
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {i }}$	0.86	2.00	$2.842(3)$	167
$\mathrm{O}^{\prime}-\mathrm{H} 3 \mathrm{O} \cdots 3^{\prime \text { ii }}$	0.84	2.46	$3.2745(16)$	163
$\mathrm{O}^{\prime}-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O}^{\text {iiii }}$	0.84	1.86	$2.662(3)$	160
$\mathrm{O}^{\prime}-\mathrm{H} 6 \mathrm{O} \cdots \mathrm{O}^{2 \text { iv }}$	0.84	1.89	$2.721(2)$	170

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2},-z+1$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$; (iii) $x-1, y, z$; (iv) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

JR thanks the Technology Development Center of Finland (TEKES) for partial financial support of this work and Professor Alex Azhayev for his interest. IAM is grateful to the Alexander von Humboldt-Stiftung (Bad Godesberg, Bonn, Germany) for a research stipend.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2046).

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Chekhlov, A. N. (1995). J. Struct. Chem. (Moscow), 36, 178-184.
Kulak, T. I., Tkachenko, O. V., Sentjureva, S. L., Vepsäläinen, J. \& Mikhailopulo, I. A. (2005). Synlett, 11, 1683-1686.
Miles, D. W., Inskeep, W. H., Robins, M. J., Winkley, M. W., Robins, R. K. \& Eyring, H. (1970). J. Am. Chem. Soc. 92, 3872-3881.
Miles, D. W., Robins, R. K. \& Eyring, H. (1967). Proc. Natl Acad. Sci. USA, 57, 1138-1145.
Pradeepkumar, P. I., Cheruku, P., Plashkevych, O., Acharya, P., Gohil, S. \& Chattopadhyaya, J. (2004). J. Am. Chem. Soc. 126, 11484-11499.
Roivainen, J., Mikhailopulo, I., Reuter, H. \& Eickmeier, H. (2006). Acta Cryst. C62, o659-o660.
Roivainen, J., Vepsäläinen, J., Azhayev, A. \& Mikhailopulo, I. A. (2002). Tetrahedron Lett. 43, 6553-6555.
Seela, F., Becher, G., Rosemeyer, H., Reuter, H., Kastner, G. \& Mikhailopulo, I. A. (1999). Helv. Chim. Acta, 82, 105-124.

Sheldrick, G. M. (1997). SHELXTL. Release 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Release 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Young, D. W., Tollin, P. \& Wilson, H. R. (1969). Acta Cryst. B25, 1423-1432.

supplementary materials

Acta Cryst. (2007). E63, o4294 [doi:10.1107/S1600536807048866]

Methyl 1-deoxy-1-(\boldsymbol{N}^{1}-thyminyl)- $\boldsymbol{\beta}$-D-psicofuranoside

J. Roivainen, H. Reuter, I. A. Mikhailopulo and H. Eickmeier

Comment

In a search of new approaches to the synthesis of conformationally rigid 1,3 -anhydro- β - D-psicofuranosyl nucleosides, we have briefly reported on the condensation of methyl 1,3-anhydro-4,6-di-O-toluoyl - β - D-psicofuranoside (I, scheme 1) with persilylated thymine (Roivainen et al., 2002). Conventional work-up of the reaction mixture followed by deprotection of the product gave thymine nucleoside, structure of which was tentatively proposed as 1-(1,3-anhydro - $\beta-D$ psicofuranosyl)thymine (II).

Later on, careful comparison of the NMR spectroscopy data for isolated compound with those for 9-(1,3-anhydro- $\beta-D-$ psicofuranosyl)adenine (Roivainen et al., 2002), 1-(1,3-anhydro- $\beta-D-$ psicofuranosyl)uracil (Kulak et al., 2005) and 1-(1,3-anhydro- β - D-psicofuranosyl)thymine (II) (Pradeepkumar et al., 2004), as well as the CD spectroscopy data for isolated compound with those for uracil and thymine nucleosides (Miles et al., 1967, 1970; Kulak et al., 2005) showed essential differences pointing to the unusual structure of the former. We have, therefore, undertaken the determination of the crystal and molecular structure of isolated thymime derivative. Recently, we have determined the single-crystal X-ray structure of 9-(1,3-anhydro- β - D-psicofuranosyl)adenine (Roivainen et al., 2006).

The molecular structure of the new glycoside (Fig.1) was found to be methyl 1-deoxy-1-(N^{1}-thyminyl)- β - D-psicofuranoside (III). It became obvious that its formation from methyl glycoside (I) and persilylated thymine results from nucleophilic attack of the nitrogen-atom N 1 of the base onto the carbon atom C 1 ' of the sugar.

As might be expected, the structure of the thymine base of (III) was found to be very similar to that of thymidine (Young et al., 1969; Chekhlov, 1995). The C1'-N1 bond length of 1.464 (2) \AA is shorter than the glycosidic bond length of thymidine by $0.016 \AA$ (Young et al., 1969; Chekhlov, 1995). The furanosyl ring of (III) in the solid state adopts the S-type sugar pucker with the following pseudorotational parameters: $\mathrm{P}_{\mathrm{S}}=159.6^{\circ}\left(\mathrm{C} 2^{\prime}\right.$-endo according to the designation of the ribofuranose ring of natural nucleosides; C3'-endo; according to the atom numbering indicated in Fig. 1) and $v_{\max }=35.9^{\circ}$. The conformation around the C5'-C6' bond is ap (gauche,trans; gt;-g) with a torsion angle γ of -170.3 (2) ${ }^{\circ}$. It is noteworthy that the C5'-O5' bond is longer than O5'-C2' as it is the case for the most nucleosides (Seela et al., 1999; Roivainen et al., 2006).

In solid state the molecules are linked to each other via four hydrogen bonds of different strengths. From the thymine base the oxygen atoms ($\mathrm{O} 2, \mathrm{O} 4$) act as acceptors and the NH -group (N 3) as donor of hydrogen bonds. From the sugar moiety the hydroxyl group of O4' acts as donor and the hydroxyl groups of O3' and O6' as donor as well as acceptor groups. In summary, a three dimensional hydrogen bonding scheme results (Fig. 2).

Experimental

The synthesis of compound (I) has been described earlier (Roivainen et al., 2002). Samples for X-ray analyses were crystallized from a mixture of methanol and propanol-2. Single crystals suitable for X-ray diffraction were selected directly from the sample as prepared.

supplementary materials

Refinement

In the absence of suitable anomalous scattering, Friedel equivalents could not be used to determine the absolute structure. Therefore, Friedel equivalents were merged before the final refinements.

The known configuration of the parent molecule was used to define the enantiomer employed in this structure refinement.

All H atoms were initially found in a difference Fourier synthesis. In order to maximize the data/parameter ratio, the H atoms bonded to carbon were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$) and constrained to ride on their parent atoms with a common isotropic displament parameter. The hydrogen atoms of the OH und NH groups were first refined with the restriction of a common $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond length (DFIX). After refinement the positions of these hydrogen atoms were also constrained (AFIX 3).

Figures

Fig. 3. The structures of (I), (II) and (III).

Methyl 1-deoxy-1-($\mathbf{N}^{\mathbf{1}}$-thyminyl)- β - \boldsymbol{D}-psicofuranoside

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}$
$M_{r}=302.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=5.7476$ (7) \AA
$b=15.6207(12) \AA$
$c=15.6735(12) \AA$
$V=1407.2(2) \AA^{3}$
$Z=4$
$F_{000}=640$
$D_{\mathrm{x}}=1.427 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 65 reflections
$\theta=5.5-12.4^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.35 \times 0.16 \times 0.16 \mathrm{~mm}$

Data collection

Siemens P4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
20/ ω scans
Absorption correction: none
3072 measured reflections
2335 independent reflections
2102 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=30.0^{\circ}$
$\theta_{\text {min }}=1.8^{\circ}$
$h=-8 \rightarrow 1$
$k=-21 \rightarrow 1$
$l=-1 \rightarrow 22$
3 standard reflections
every 97 reflections
intensity decay: 0.4%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.132$
$S=1.05$
2335 reflections
192 parameters
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Flack parameter: 1.7 (14)
Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	$0.1653(3)$	$0.49559(9)$	$0.48231(10)$	$0.0332(4)$
C2	$0.2349(5)$	$0.57613(13)$	$0.45747(13)$	$0.0383(5)$

O2	0.4073 (4)	0.58835 (11)	0.41307 (12)	0.0553 (5)
N3	0.0962 (5)	0.64153 (11)	0.48671 (14)	0.0487 (5)
H3	0.1333	0.6923	0.4706	0.075 (3)*
C4	-0.0964 (5)	0.63477 (13)	0.53910 (15)	0.0443 (5)
O4	-0.2060 (5)	0.69882 (12)	0.56133 (16)	0.0728 (7)
C5	-0.1533 (4)	0.54875 (13)	0.56644 (13)	0.0369 (4)
C50	-0.3524 (5)	0.53625 (19)	0.62618 (18)	0.0531 (6)
H501	-0.4222	0.5906	0.6387	0.075 (3)*
H502	-0.2973	0.5106	0.6781	0.075 (3)*
H503	-0.4658	0.4994	0.6002	0.075 (3)*
C6	-0.0208 (4)	0.48472 (12)	0.53712 (12)	0.0339 (4)
H6	-0.0562	0.4294	0.5547	0.075 (3)*
C1'	0.2955 (4)	0.42076 (12)	0.45255 (12)	0.0328 (4)
H1'1	0.3118	0.3804	0.4992	0.075 (3)*
H1'2	0.4502	0.4386	0.4354	0.075 (3)*
C2'	0.1763 (4)	0.37591 (12)	0.37717 (11)	0.0304 (4)
O2'	0.1290 (3)	0.43351 (11)	0.30982 (10)	0.0426 (4)
C3'	-0.0556 (4)	0.33227 (13)	0.39528 (12)	0.0349 (4)
H3'	-0.1868	0.3719	0.3893	0.075 (3)*
O3'	-0.0464 (4)	0.29518 (10)	0.47810 (10)	0.0512 (5)
H3O	-0.1711	0.2672	0.4789	0.075 (3)*
C4'	-0.0604 (4)	0.26182 (13)	0.32716 (13)	0.0339 (4)
H4'	-0.1183	0.2847	0.2729	0.075 (3)*
O4'	-0.1915 (3)	0.18980 (10)	0.35188 (11)	0.0466 (4)
H4O	-0.3134	0.1845	0.3229	0.075 (3)*
C5'	0.1973 (4)	0.23823 (13)	0.31950 (13)	0.0350 (4)
H5'	0.2278	0.1885	0.3559	0.075 (3)*
O5'	0.3284 (3)	0.30973 (10)	0.35161 (10)	0.0390 (3)
C6'	0.2637 (5)	0.21586 (19)	0.22929 (16)	0.0491 (6)
H6'1	0.1545	0.1745	0.2063	0.075 (3)*
H6'2	0.2585	0.2667	0.1939	0.075 (3)*
O6'	0.4901 (4)	0.18126 (19)	0.22886 (14)	0.0791 (8)
H6O	0.5052	0.1505	0.1853	0.075 (3)*
C22'	0.3241 (6)	0.4601 (2)	0.26075 (16)	0.0610 (8)
H221	0.2739	0.4990	0.2170	0.075 (3)*
H222	0.3957	0.4110	0.2349	0.075 (3)*
H223	0.4345	0.4882	0.2972	0.075 (3)*

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0448(9)$	$0.0214(6)$	$0.0335(7)$	$-0.0003(7)$	$0.0067(7)$	$0.0013(5)$
C 2	$0.0525(12)$	$0.0267(8)$	$0.0356(9)$	$-0.0049(9)$	$-0.0002(9)$	$0.0056(7)$
O 2	$0.0691(12)$	$0.0419(9)$	$0.0549(10)$	$-0.0134(9)$	$0.0151(10)$	$0.0100(7)$
N 3	$0.0715(14)$	$0.0209(7)$	$0.0536(10)$	$-0.0022(9)$	$0.0011(11)$	$0.0046(7)$
C 4	$0.0599(14)$	$0.0256(8)$	$0.0475(11)$	$0.0090(10)$	$-0.0042(11)$	$-0.0010(8)$
O4	$0.0989(18)$	$0.0346(9)$	$0.0848(14)$	$0.0265(11)$	$0.0097(15)$	$-0.0036(9)$
C5	$0.0430(11)$	$0.0318(9)$	$0.0360(9)$	$0.0022(9)$	$-0.0012(9)$	$-0.0047(7)$

sup-4

supplementary materials

C50	$0.0507(14)$	$0.0545(13)$	$0.0540(13)$	$0.0041(12)$	$0.0113(12)$	$-0.0138(11)$
C6	$0.0456(11)$	$0.0241(7)$	$0.0319(8)$	$-0.0033(8)$	$0.0051(8)$	$-0.0018(6)$
C1'	$0.0391(10)$	$0.0285(8)$	$0.0307(8)$	$0.0054(8)$	$0.0002(8)$	$-0.0003(7)$
C2 $^{\prime}$	$0.0338(9)$	$0.0290(8)$	$0.0285(7)$	$0.0049(7)$	$0.0042(7)$	$0.0003(6)$
O2' $^{\prime}$	$0.0471(9)$	$0.0461(8)$	$0.0345(7)$	$-0.0037(7)$	$-0.0035(7)$	$0.0128(6)$
C3' $^{\prime}$	$0.0367(10)$	$0.0297(8)$	$0.0382(9)$	$0.0025(8)$	$0.0077(8)$	$-0.0010(7)$
O3' $^{\prime}$	$0.0813(13)$	$0.0363(8)$	$0.0361(7)$	$-0.0176(9)$	$0.0171(9)$	$-0.0027(6)$
C4' $^{\prime}$	$0.0340(9)$	$0.0319(8)$	$0.0359(9)$	$0.0023(8)$	$0.0013(8)$	$-0.0009(7)$
O4' $^{\prime}$	$0.0498(9)$	$0.0383(8)$	$0.0517(9)$	$-0.0087(7)$	$-0.0008(8)$	$-0.0014(7)$
C5' $^{\prime}$	$0.0361(10)$	$0.0345(9)$	$0.0345(8)$	$0.0073(8)$	$-0.0021(8)$	$-0.0082(7)$
O5 $^{\prime}$	$0.0323(7)$	$0.0406(7)$	$0.0440(7)$	$0.0080(6)$	$-0.0010(6)$	$-0.0156(6)$
C6 $^{\prime}$	$0.0446(12)$	$0.0605(15)$	$0.0423(10)$	$0.0053(12)$	$0.0000(10)$	$-0.0230(11)$
O6' $^{\prime}$	$0.0506(11)$	$0.122(2)$	$0.0651(12)$	$0.0234(13)$	$-0.0032(10)$	$-0.0587(14)$
C22 $^{\prime}$	$0.074(2)$	$0.0713(17)$	$0.0374(10)$	$-0.0288(17)$	$0.0071(13)$	$0.0091(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1-C2	1.376 (2)
N1-C6	1.382 (3)
N1-C1'	1.464 (2)
C2-O2	1.226 (3)
C2-N3	1.375 (3)
N3-C4	1.382 (4)
N3-H3	0.8600
C4-O4	1.232 (3)
C4-C5	1.448 (3)
C5-C6	1.338 (3)
C5-C50	1.491 (3)
C50-H501	0.9600
C50-H502	0.9600
C50-H503	0.9600
C6-H6	0.9300
C1'-C2'	1.535 (3)
C1'-H1'1	0.9700
C1'-H1'2	0.9700
C2'-O5'	1.412 (2)
$\mathrm{C} 2{ }^{\prime}-\mathrm{O} 2{ }^{\prime}$	1.413 (2)
C2-N1-C6	120.86 (17)
C2-N1-C1'	119.41 (18)
C6-N1-C1'	119.69 (15)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 3$	122.86 (19)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	122.5 (2)
N3-C2-N1	114.6 (2)
C2-N3-C4	127.30 (17)
C2-N3-H3	116.4
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 3$	116.4
O4-C4-N3	121.0 (2)
O4-C4-C5	123.7 (3)
N3-C4-C5	115.31 (19)

C2'-C3'	1.524 (3)
O2'- ${ }^{\prime} 22^{\prime}$	1.422 (3)
C3'-O3'	1.423 (2)
C3'-C4'	1.534 (3)
C3'-H3'	0.9800
O3'-H3O	0.8389
C4'-O4'	1.408 (3)
C4'-C5'	1.531 (3)
C4'-H4'	0.9800
O4'-H4O	0.8389
C5'-O5'	1.438 (3)
C5'-C6'	1.505 (3)
C5'-H5'	0.9800
C6'-O6'	1.409 (4)
C6'-H6' 1	0.9700
C6'-H6'2	0.9700
O6'-H6O	0.8389
C22'-H221	0.9600
C22'-H222	0.9600
C22'-H223	0.9600
C2'-O2'- ${ }^{\prime} 22^{\prime}$	116.0 (2)
O3'-C3'-C2'	108.65 (18)
O3'-C3'- ${ }^{\prime} 4^{\prime}$	110.10 (16)
C2'-C3'-C4'	101.94 (16)
O3'-C3'-H3'	111.9
C2'-C3'- ${ }^{\prime} 3^{\prime}$	111.9
C4'-C3'- ${ }^{\prime} 3^{\prime}$	111.9
C3'-O3'-H3O	101.2
O4'- $4^{\prime}{ }^{\prime}-\mathrm{C} 5^{\prime}$	110.30 (17)
O4'- $4^{\prime}{ }^{\prime}-\mathrm{C} 3^{\prime}$	113.03 (17)
C5'-C4'- ${ }^{\prime} 3^{\prime}$	102.12 (17)
O4'- $4^{\prime}{ }^{\prime}-\mathrm{H} 4{ }^{\prime}$	110.4

C6-C5-C4	117.6 (2)
C6-C5-C50	123.7 (2)
C4-C5-C50	118.7 (2)
C5-C50-H501	109.5
C5-C50-H502	109.5
H501-C50-H502	109.5
C5-C50-H503	109.5
H501-C50-H503	109.5
H502-C50-H503	109.5
C5-C6-N1	124.18 (18)
C5-C6-H6	117.9
N1-C6-H6	117.9
N1-C1'-C2'	112.45 (17)
N1-C1'- ${ }^{\prime} 1^{\prime} 1$	109.1
C2'- $\mathrm{Cl}^{\prime}-\mathrm{H} 1{ }^{\prime} 1$	109.1
N1-C1'-H1'2	109.1
C2'-C1'- ${ }^{\prime} 1^{\prime} 2$	109.1
$\mathrm{H} 1{ }^{\prime}-\mathrm{Cl}{ }^{\prime}-\mathrm{H1}{ }^{\prime} 2$	107.8
O5'- $\mathrm{C} 2^{\prime}-\mathrm{O} 2^{\prime}$	111.93 (16)
O5'-C2'-C3'	105.49 (15)
O2'-C2'-C3'	104.80 (17)
O5'-C2'- Cl^{\prime}	106.05 (16)
$\mathrm{O} 2^{\prime}-\mathrm{C} 2{ }^{\prime}-\mathrm{C} 1^{\prime}$	111.72 (16)
C3'-C2'-C1'	116.81 (16)
C6-N1-C2-O2	175.6 (2)
C 1 - $\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 2$	-2.3 (3)
C6-N1-C2-N3	-4.2 (3)
C1'-N1-C2-N3	177.94 (19)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	-177.7 (2)
N1-C2-N3-C4	2.1 (4)
C2-N3-C4-O4	179.6 (3)
C2-N3-C4-C5	0.9 (4)
O4-C4-C5-C6	179.6 (3)
N3-C4-C5-C6	-1.8 (3)
O4-C4-C5-C50	-1.2 (4)
N3-C4-C5-C50	177.4 (2)
C4-C5-C6-N1	-0.3 (3)
C50-C5-C6-N1	-179.4 (2)
C2-N1-C6-C5	3.6 (3)
C1- ${ }^{\text {N1- } 1-\mathrm{C} 6-\mathrm{C} 5}$	-178.6 (2)
C2-N1-C1- $\mathrm{C}^{\prime}{ }^{\prime}$	-100.1 (2)
C6-N1-C1-- 2^{\prime}	82.0 (2)
$\mathrm{N} 1-\mathrm{C} 1^{\prime}-\mathrm{C}^{\prime}-\mathrm{O} 5^{\prime}$	175.76 (15)
N1-C1'-C2'-O2'	53.6 (2)
N1-C1'-C2'-C3'	-67.1 (2)
O5'-C2'-O2'-C22'	-44.8 (3)
C3'-C2'-O2'-C22'	-158.6 (2)

C5'-C4'- ${ }^{\prime} 4^{\prime}$	110.4
C3'-C4'- ${ }^{\prime} 4^{\prime}$	110.4
C4'-O4'-H4O	112.1
O5'-C5'- ${ }^{\text {c } 6}$	112.1 (2)
O5'-C5'-C4'	107.02 (15)
C6'-C5'-C4'	112.00 (19)
O5'- ${ }^{\prime} 5^{\prime}-\mathrm{H} 5{ }^{\prime}$	108.5
C6'-C5'-H5'	108.5
C4'-C5'-H5'	108.5
C2'-O5'- ${ }^{\prime} 5$	110.08 (15)
O6'- ${ }^{\prime} 6^{\prime}-\mathrm{C} 5{ }^{\prime}$	109.1 (2)
O6'-C6'-H6' 1	109.9
C5'-C6'-H6' 1	109.9
O6'- $\mathbf{C 6}^{\prime}$ - $\mathrm{H} 6^{\prime} 2$	109.9
C5'- $\mathbf{C 6}^{\prime}-\mathrm{H} 6^{\prime} 2$	109.9
H6'1-C6'-H6'2	108.3
C6'-O6'-H6O	108.6
O2'- ${ }^{\prime} 22^{\prime}-\mathrm{H} 221$	109.5
O2'-C22'-H222	109.5
H221-C22'-H222	109.5
O2'-C22'- ${ }^{\prime} 223$	109.5
H221-C22'-H223	109.5
H222-C22'-H223	109.5
C1'-C2'-O2'-C22'	74.0 (2)
O5'- \mathbf{C}^{\prime} '- C^{\prime} '-O3'	80.69 (18)
O2'-C2'-C3'-O3'	-161.01 (16)
$\mathrm{C} 1^{\prime}-\mathrm{C} 2{ }^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{O} 3^{\prime}$	-36.8 (2)
O5'- $2^{\prime}{ }^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	-35.54 (19)
O2'- $2^{\prime}{ }^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	82.75 (18)
$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	-153.02 (17)
O3'-C3'-C4'-O4'	36.9 (3)
$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{O} 4^{\prime}$	152.08 (17)
O3'- 3^{\prime} '- $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	-81.6 (2)
C2'-C3'-C4'- ${ }^{\prime} 5^{\prime}$	33.6 (2)
O4'- $4^{\prime}{ }^{\prime}-\mathrm{C}^{\prime}-\mathrm{O} 5^{\prime}$	-141.60 (16)
C3'- 4^{\prime} '- ${ }^{\text {C }}{ }^{\prime}-\mathrm{O} 5^{\prime}$	-21.2 (2)
O4'- $4^{\prime}{ }^{\prime}-\mathrm{C}^{\prime}-$ C 6^{\prime}	95.2 (2)
C3'-C4'- $\mathbf{C 5}^{\prime}$ - $\mathrm{C}^{\prime}{ }^{\prime}$	-144.4 (2)
O2'-C2'-O5'-C5'	-90.3 (2)
C3'- $\mathbf{C 2}^{\prime}-\mathrm{O} 5^{\prime}-\mathrm{C} 5{ }^{\prime}$	23.1 (2)
C1'- \mathbf{C}^{\prime} - O^{\prime} '- $\mathrm{C} 5^{\prime}$	147.67 (17)
C6'-C5'-O5'- ${ }^{\prime} 2^{\prime}$	122.23 (19)
C4'- $\mathbf{C} 5^{\prime}$ - O^{\prime} '- $\mathrm{C} 2^{\prime}$	-0.9 (2)
O5'-C5'-C6'-O6'	69.4 (3)
C4'- $5^{\prime}{ }^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{O} 6^{\prime}$	-170.3 (2)

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 \cdots O4 ${ }^{\text {i }}$	0.86	2.00	2.842 (3)	167
O3'-H3O $\cdots{ }^{\text {O }} 3^{\text {ii }}$	0.84	2.46	3.2745 (16)	163
O4'-H4O $\cdots{ }^{\prime} 6^{\text {iiii }}$	0.84	1.86	2.662 (3)	160
O6'-H6O $\cdots{ }^{\text {O }} 2^{\text {iv }}$	0.84	1.89	2.721 (2)	170

Symmetry codes: (i) $x+1 / 2,-y+3 / 2,-z+1$; (ii) $x-1 / 2,-y+1 / 2,-z+1$; (iii) $x-1, y, z$; (iv) $-x+1, y-1 / 2,-z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

(I)

(II)

(III)

[^0]: \ddagger On leave from: Institute of Bioorganic Chemistry, National Academy of Science of Belarus, Acad. Kuprevicha 5/2, BY-220141 Minsk, Belarus; e-mail: Igor_mikhailo@yahoo.de.

